Search results for "ACTION OBSERVATION"
showing 10 items of 16 documents
Technition: When Tools Come Out of the Closet
2020
People are ambivalently enthusiastic and anxious about how far technology can go. Therefore, understanding the neurocognitive bases of the human technical mind should be a major topic of the cognitive sciences. Surprisingly, however, scientists are not interested in this topic or address it only marginally in other mainstream domains (e.g., motor control, action observation, social cognition). In fact, this lack of interest may hinder our understanding of the necessary neurocognitive skills underlying our appetence for transforming our physical environment. Here, we develop the thesis that our technical mind originates in perhaps uniquely human neurocognitive skills, namely, technical-reas…
Commentary: Concurrent Imitative Movement During Action Observation Facilitates Accuracy of Outcome Prediction in Less-Skilled Performers
2018
Revisiting mu suppression in autism spectrum disorder
2014
Two aspects of the EEG literature lead us to revisit mu suppression in Autism Spectrum Disorder (ASD). First and despite the fact that the mu rhythm can be functionally segregated in two discrete sub-bands, 8-10 Hz and 10-12/13 Hz, mu-suppression in ASD has been analyzed as a homogeneous phenomenon covering the 8-13 Hz frequency. Second and although alpha-like activity is usually found across the entire scalp, ASD studies of action observation have focused on the central electrodes (C3/C4). The present study was aimed at testing on the whole brain the hypothesis of a functional dissociation of mu and alpha responses to the observation of human actions in ASD according to bandwidths. Electro…
Motor imagery and cortico-spinal excitability: A review
2016
International audience; Motor imagery (MI) has received a lot of interest during the last decades as its chronic or acute use has demonstrated several effects on improving sport performances or skills. The development of neuroimagery techniques also helped further our understanding of the neural correlates underlying MI. While some authors showed that MI, motor execution and action observation activated similar motor cortical regions, transcranial magnetic stimulation (TMS) studies brought great insights on the role of the primary motor cortex and on the activation of the cortico-spinal pathway during MI. After defining MI and describing the TMS technique, a short report of MI activities on…
Grasp-specific motor resonance is influenced by the visibility of the observed actor
2016
AbstractMotor resonance is the modulation of M1 corticospinal excitability induced by observation of others' actions. Recent brain imaging studies have revealed that viewing videos of grasping actions led to a differential activation of the ventral premotor cortex depending on whether the entire person is viewed versus only their disembodied hand. Here we used transcranial magnetic stimulation (TMS) to examine motor evoked potentials (MEPs) in the first dorsal interosseous (FDI) and abductor digiti minimi (ADM) during observation of videos or static images in which a whole person or merely the hand was seen reaching and grasping a peanut (precision grip) or an apple (whole hand grasp). Part…
Do equilibrium constraints modulate postural reaction when viewing imbalance?
2011
Abstract Action observation and action execution are tightly coupled on a neurophysiological and a behavioral level, such that visually perceiving an action can contaminate simultaneous and subsequent action execution. More specifically, observing a model in postural disequilibrium was shown to induce an increase in observers’ body sway. Here we reciprocally questioned the role of observers’ motor system in the contagion process by comparing participants’ body sway when watching displays of antero-posterior vs. lateral imbalance. Indeed, during upright standing, biomechanical constraints differ along the antero-posterior (A-P) and medio-lateral (M-L) axes; hence an impact of observers’ post…
Predicting domain-specific actions in expert table tennis players activates the semantic brain network.
2018
Motor expertise acquired during long-term training in sports enables top athletes to predict the outcomes of domain-specific actions better than nonexperts do. However, whether expert players encode actions, in addition to the concrete sensorimotor level, also at a more abstract, conceptual level, remains unclear. The present study manipulated the congruence between body kinematics and the subsequent ball trajectory in videos of an expert player performing table tennis serves. By using functional magnetic resonance imaging, the brain activity was evaluated in expert and nonexpert table tennis players during their predictions on the fate of the ball trajectory in congruent versus incongruent…
Cerebral Dynamics during the Observation of Point-Light Displays Depicting Postural Adjustments
2017
Objective: As highly social creatures, human beings rely part of their skills of identifying, interpreting, and predicting the actions of others on the ability of perceiving biological motion. In the present study, we aim to investigate the electroencephalographic (EEG) cerebral dynamics involved in the coding of postural control and examine whether upright stance would be codified through the activation of the temporal-parietal cortical network classically enrolled in the coding of biological motion. Design: We registered the EEG activity of 12 volunteers while they passively watched point light displays (PLD) depicting quiet stable (QB) and an unstable (UB) postural situations and their r…
Boosting Action Observation and Motor Imagery to Promote Plasticity and Learning
2018
Neural Plasticity, 2018
Interhemispheric inhibition is dynamically regulated during action observation
2016
International audience; It is now well established that the motor system plays a pivotal role in action observation and that the neurophysiological processes underlying perception and action overlaps. However, while various experiments have shown a specific facilitation of the contralateral motor cortex during action observation, no information is available concerning the dynamics of interhemispheric interactions. The aim of the present study was, therefore, to assess interhemispheric inhibition during the observation of others' actions. We designed a transcranial magnetic stimulation (TMS) experiment in which we measured both corticospinal excitability and interhemispheric inhibition, this…